Extra Practice Problems for Chapter 9

1. A $2,145-\mathrm{kg}$ car is driving down the road with a momentum of $39,100 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$ south. What is its velocity?
2. A $245-\mathrm{g}$ ball is traveling at $12.3 \mathrm{~m} / \mathrm{s}$ directly towards a person. The person catches the ball, applying a force of 2,500 Newtons. How long does it take for the ball to come to rest in the person's hands?
3. A $143-\mathrm{g}$ baseball is traveling at a speed of $49.1 \mathrm{~m} / \mathrm{s}$ is hit by a bat. It leaves the bat traveling in the opposite direction. If the bat exerted a force of $12,300 \mathrm{~N}$ for 0.00091 seconds, what is the velocity of the ball after it is hit by the bat?
4. A 676-g pistol fires 2.05 -gram bullets with a muzzle velocity of $292 \mathrm{~m} / \mathrm{s}$. What is its recoil velocity?
5. A $14.5-\mathrm{kg}$ rifle shoots bullets with a muzzle velocity of $1,050 \mathrm{~m} / \mathrm{s}$. If the rifle has a recoil velocity of 1.78 m / s, what is the mass of the bullets?
6. In a training exercise, an astronaut is floating in a weightless environment with no velocity. A $19.7-\mathrm{kg}$ object moves towards him with a speed of $22.1 \mathrm{~m} / \mathrm{s}$. If the mass of the astronaut and suit is 175 kg , what will the velocity of the astronaut be after catching the object? Is this an elastic or inelastic collision?
7. Two balls are rolling towards one another on a level surface. The first has a mass of 1.7 kg and a speed of $3.2 \mathrm{~m} / \mathrm{s}$. The second has a mass of 2.2 kg and is rolling at $4.8 \mathrm{~m} / \mathrm{s}$. They collide head-on. After the collision, the first one is rolling with a speed of $3.8 \mathrm{~m} / \mathrm{s}$ in the opposite direction compared to how it was rolling initially. What is the velocity of the second ball? Is this an elastic or inelastic collision?
8. A gun is used to shoot a $7.23-\mathrm{g}$ bullet into a $915-\mathrm{g}$ ballistic pendulum. The pendulum rises to a height of 0.12 m . At what speed do the bullets leave the gun?
9. A gun is used to shoot a $15-\mathrm{g}$ bullet into a $772-\mathrm{g}$ ballistic pendulum. If the gun shoots the bullet at $292 \mathrm{~m} / \mathrm{s}$, what is the maximum height to which the ballistic pendulum rises?
10. A particle is moving in a circle of radius 1.3 m with a speed of $1,456 \mathrm{~m} / \mathrm{s}$. A force that exerts no torque is applied, and the radius increases to 2.1 m . What is the new speed of the particle?
