Extra Practice Problems for Chapter 8

1. You lift a $3.14-\mathrm{kg}$ mass straight up at a constant velocity. Once it reaches a height of 2.00 m , how much work have you done on the mass?
2. A $422-\mathrm{g}$ object has a potential energy of 11.7 J . What is its height?
3. A $734-\mathrm{g}$ object has a kinetic energy of 142 J . What is its speed?
4. A block slides down a ramp from rest. If the block started out with a height of 95 cm , what is its speed at the bottom of the ramp? Ignore friction.
5. A rollercoaster starts at rest on a $22-\mathrm{m}$ hill. After a while on the track, it is at a height of 11 m . Ignoring friction, what is its speed?
6. A bicyclist is at the top of a $4.22-\mathrm{m}$ hill and is traveling at $2.55 \mathrm{~m} / \mathrm{s}$. He stops pedaling and coasts to the bottom of the hill. Ignoring friction, what is his speed at the bottom?
7. A $557-\mathrm{kg}$ rollercoaster starts at rest on a $22-\mathrm{m}$ hill. At the bottom of the hill, it is traveling at $18.6 \mathrm{~m} / \mathrm{s}$. How much work did friction do on the rollercoaster?
8. A $17.0-\mathrm{kg}$ block is given a shove that does 134 J of work on the block. If it slides across a horizontal floor and comes to rest in 3.1 m , what is the coefficient of kinetic friction between the block and the floor?
9. A $2.22-\mathrm{kg}$ block starts from rest at the top of a ramp that is 75.0 cm high. It slides down the ramp and then across a level floor, stopping in 1.75 s . How much power did friction use to stop the block?
10. A crane lifts a $5,671-\mathrm{kg}$ load straight up at constant velocity, using 2,518 Watts of power. If the crane took 3.17 minutes to do the job, how high did it lift the load?
